Abstract

Many studies have found that neutron star mergers leave a fraction of the stars’ mass in bound orbits surrounding the resulting massive neutron star or black hole. This mass is a site of r-process nucleosynthesis and can generate a wind that contributes to a kilonova. However, comparatively little is known about the dynamics determining its mass or initial structure. Here we begin to investigate these questions, starting with the origin of the disk mass. Using tracer particle as well as discretized fluid data from numerical simulations, we identify where in the neutron stars the debris came from, the paths it takes in order to escape from the neutron stars’ interiors, and the times and locations at which its orbital properties diverge from those of neighboring fluid elements that end up remaining in the merged neutron star.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.