Abstract

We investigate a bounce inflation model with a graceful exit into the Friedmann-Robertson-Walker (FRW) decelerated Universe within $f(T)$ gravity framework, where $T$ is the torsion scalar in the teleparallelism. We study the cosmic thermal evolution, the model predicts a supercold Universe during the precontraction phase, which is consistent with the requirements of the slow-roll models, while it performs a reheating period by the end of the contraction with a maximum temperature just below the grand unified theory (GUT) temperature. However, it matches the radiation temperature of the hot big bang at later stages. The equation-of-state due to the effective gravitational sector suggests that our Universe is self-accelerated by teleparallel gravity. We assume the matter component to be a canonical scalar field. We obtain the scalar field potential that is induced by the $f(T)$ theory. The power spectrum of the model is nearly scale invariant. In addition, we show that the model unifies inflaton and quintessence fields in a single model. Also, we revisited the primordial fluctuations in $f(T)$ bounce cosmology, to study the fluctuations that are produced at the precontraction phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.