Abstract
Finite energy QCD sum rules involving both inverse and positive moment integration kernels are employed to determine the bottom quark mass. The result obtained in the $\bar{\text {MS}}$ scheme at a reference scale of $10\, {GeV}$ is $\bar{m}_b(10\,\text{GeV})= 3623(9)\,\text{MeV}$. This value translates into a scale invariant mass $\bar{m}_b(\bar{m}_b) = 4171 (9)\, {MeV}$. This result has the lowest total uncertainty of any method, and is less sensitive to a number of systematic uncertainties that affect other QCD sum rule determinations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.