Abstract

A plant's induction of secondary defenses helps to decrease herbivore damage by changing resource quality. While these chemical or physical defenses may directly decrease herbivory, they can also have indirect consequences. In a tritrophic system consisting of a plant, an insect herbivore, and an insect pathogen, plant based trait-mediated indirect effects (TMIEs) can alter host-pathogen interactions and, thereby, indirectly affect disease transmission. In a series of field experiments, individual soybean plants (Glycine max) were sprayed with either a jasmonic acid (JA) solution to trigger induction of plant defenses or a similar control compound. Fall armyworm (Spodoptera frugiperda) larvae along with varying amounts of a lethal baculovirus were placed on the plants to measure transmission. Induction of plant defenses decreased viral transmission due to increased population heterogeneity arising from changes in individual susceptibility. The change in susceptibility via TMIEs was driven by a decrease in feeding rates and an increase viral dose needed to infect larvae. While the induction against herbivore attack may decrease herbivory, it can also decrease the efficacy of the herbivore's pathogen potentially to the plant's detriment. While TMIEs have been well-recognized for being driven by top-down forces, bottom-up interactions can dictate community dynamics and, here, epizootic severity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.