Abstract

A novel method to determine the flooding/loading transition point (Nf) was proposed based on the measurements of the bottom pressure. Experiments were carried out in an aerated vessel stirred with a Rushton impeller in single-phase and two-phase systems. The results showed that the bottom pressure (P) in the single-phase system had a parabolic decrease with the increasing impeller speed (N), which followed the Bernoulli Effect; the flooding/loading transition was defined by a sharp change in the P–N curve. The data were well consistent with the results obtained by the global gas holdup method, as well as the existing literature data on flooding/loading transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.