Abstract

Cells carrying deletions of genes encoding H-class ribonucleases display elevated rates of chromosome instability. The role of these enzymes is to remove RNA-DNA associations including persistent mRNA-DNA hybrids (R-loops) formed during transcription, and ribonucleotides incorporated into DNA during replication. RNases H1 and H2 can degrade the RNA component of R-loops, but only RNase H2 can initiate accurate ribonucleotide excision repair (RER). In order to examine the specific contributions of these activities to chromosome stability, we measured rates of loss-of-heterozygosity (LOH) in diploid Saccharomyces cerevisiae yeast strains carrying the rnh201-RED separation-of-function allele, encoding a version of RNase H2 that is RER-defective, but partly retains its other activity. The LOH rate in rnh201-RED was intermediate between RNH201 and rnh201Δ. In strains carrying a mutant version of DNA polymerase ε (pol2-M644G) that incorporates more ribonucleotides than normal, the LOH rate in rnh201-RED was as high as the rate measured in rnh201Δ. Topoisomerase 1 cleavage at sites of ribonucleotide incorporation has been recently shown to produce DNA double strand breaks. Accordingly, in both the POL2 and pol2-M644G backgrounds, the LOH elevation in rnh201-RED was suppressed by top1Δ. In contrast, in strains that incorporate fewer ribonucleotides (pol2-M644L) the LOH rate in rnh201-RED was low and independent of topoisomerase 1. These results suggest that both R-loop removal and RER contribute substantially to chromosome stability, and that their relative contributions may be variable across different regions of the genome. In this scenario, a prominent contribution of R-loop removal may be expected at highly transcribed regions, whereas RER may play a greater role at hotspots of ribonucleotide incorporation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.