Abstract
Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are food-borne pathogens that colonize the small intestine and colon, respectively. To cause disease, these pathogens must overcome the action of different host antimicrobial peptides (AMPs) secreted into these distinct niches. We have shown previously that EHEC expresses high levels of the OmpT protease to inactivate the human cathelicidin LL-37, an AMP present in the colon. In this study, we investigate the mechanisms used by EPEC to resist human α-defensin 5 (HD-5), the most abundant AMP in the small intestine. Quantitative PCR was used to measure transcript levels of various EPEC surface structures. High transcript levels of gfcA, a gene required for group 4 capsule (G4C) production, were observed in EPEC, but not in EHEC. The unencapsulated EPEC ∆gfcA and EHEC wild-type strains were more susceptible to HD-5 than EPEC wild-type. Since the G4C is composed of the same sugar repeats as the lipopolysaccharide O-antigen, an -antigen ligase (waaL) deletion mutant was generated in EPEC to assess its role in HD-5 resistance. The ∆waaL EPEC strain was more susceptible to HD-5 than both the wild-type and ∆gfcA strains. The ∆gfcA∆waaL EPEC strain was not significantly more susceptible to HD-5 than the ∆waaL strain, suggesting that the absence of -antigen influences G4C formation. To determine whether the G4C and -antigen interact with HD-5, total polysaccharide was purified from wild-type EPEC and added to the ∆gfcA∆waaL strain in the presence of HD-5. The addition of exogenous polysaccharide protected the susceptible strain against HD-5 killing in a dose-dependent manner, suggesting that HD-5 binds to the polysaccharides present on the surface of EPEC. Altogether, these findings indicate that EPEC relies on both the G4C and the -antigen to resist the bactericidal activity of HD-5.
Highlights
Enteropathogenic Escherichia coli (EPEC) is one of the leading causes of infant diarrheal morbidity and mortality in developing countries [1,2]
To identify the surface structures expressed by EPEC cells grown in N-minimal medium, the transcript levels of the genes required for production of group 4 capsule (G4C), exopolysaccharide [36], cellulose, curli, and colanic acid were measured by Quantitative PCR (qPCR)
human α-defensin 5 (HD-5) is the most abundant antimicrobial peptides (AMPs) released in the small intestine by Paneth cells [26,27]
Summary
Enteropathogenic Escherichia coli (EPEC) is one of the leading causes of infant diarrheal morbidity and mortality in developing countries [1,2]. Enterohemorrhagic Escherichia coli (EHEC) is a genetically related pathogen that causes foodborne outbreaks of severe diarrhea in developed countries [3,4]. Both EPEC and EHEC cause histopathological lesions known as attaching and effacing (A/E) lesions, characterized by the localized effacement of microvilli, the intimate attachment of bacteria to the enterocyte plasma membrane and the formation of pedestal-like structures beneath sites of bacterial attachment [5,6]. Despite similarities in virulence factors, EPEC and EHEC have strict tissue tropism for the human small intestine and colon, respectively [3,7]. Intimate adherence to the intestinal mucosa exposes these pathogens to secreted antimicrobial peptides (AMPs)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.