Abstract

We use optical spectroscopy to investigate the excitations responsible for the structure in the optical self-energy of thin epitaxial films of La(1.83)Sr(0.17)CuO(4). Using Eliashberg's formalism to invert the optical spectra we extract the electron-boson spectral function and find that at low temperature it has a two component structure closely matching the spin excitation spectrum recently measured by magnetic neutron scattering. We contrast the temperature evolution of the spectral density and the two-peak behavior in La(2-Sr(x)CuO(4) with another high temperature superconductor Bi(2)Sr(2)CaCu(2)O(8+delta). The bosonic spectral functions of the two materials account for the low T(c) of LSCO as compared to Bi-2212.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.