Abstract

Boron-embedded aromatic hydrocarbons are a class of molecules known for their distinct electronic and/or optoelectronic properties and are thus suitable for many potential applications. Among those, boronic ester and acid containing molecules have been widely used for sensing and molecular recognition applications, respectively. We compared the sensing and molecular recognition properties of two boron-containing pyrene derivatives for fluoride and glucose sensing applications. The presence of four boronate ester groups enabled fluoride ion sensing at the μM level. The boronic acid derivative is very selective towards glucose compared to other saccharides. Furthermore, we used the mechano-responsive fluorescence changes and self-assembly of these derivatives, respectively, for fluorescence-based inkless and ink (water)-based writing in invisible security labeling applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.