Abstract
Pure uranium dioxide and uranium dioxide-gadolinium oxide (5 and 10%) fuels used in this study were prepared by the solution-gelation (sol-gel) technique. The fuels were then coated with boron carbide by chemical vapor deposition. Boron carbide was produced from the reaction of carbon tetrachloride and boron trichloride with excess hydrogen, in a tube furnace at 1000, 1100, and 1175°C. The Fourier transform infrared data of boron carbide deposited on a silica glass were in agreement with the ones in the literature. The experiments showed that the composition of the coating changed with deposition temperature. There was boron-rich coating at low-temperature deposition, and carbon-rich coating at high-temperature deposition. The morphology and the thickness of the coating have been investigated by using scanning electron microscopy and X-ray diffraction spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.