Abstract

The preparation of a polymer carrier for a boron delivery agent is presented through a combination of experimental and computational studies. A dodecahydro-closo-dodecaborate (B12H12)2– (B12) anion was used as a model boron-containing agent due to its high boron content. Quaternized poly(2-vinyl pyridine)-b-poly(ethylene oxide) (QP2VP-b-PEO) was chosen as a model neutral–cationic block copolymer to construct the carrier. The electrostatic association between QP2VP and B12 induced the self-assembly of QP2VP-b-PEO, resulting in micelles with (B12 + QP2VP)-core and PEO-corona. The mechanism of formation of (B12 + QP2VP)-b-PEO micelles was examined through density functional theory (DFT) calculations and classical simulations. (B12 + QP2VP)-b-PEO micelles were found to be undurable in biological medium. To enhance stability, micelles were utilized as building blocks together with poly(N-vinyl caprolactam) (PVCL) and tannic acid (TA) to construct layer-by-layer (LbL) microparticles. Cytotoxicity and cellular association of LbL particles were assessed using the HepG2 cell line. Multilayered particles were found to show no cellular cytotoxicity. Association studies and the boron content of treated cells through inductively coupled plasma optical emission spectroscopy (ICP-OES) showed that LbL microparticles were extensively associated with and successfully delivered boron to HepG2 cells. This study reveals the challenges and possible solutions to obtain stable self-assembled structures in a cell culture medium. These findings contribute to a fundamental understanding of the structure–property relationship in self-assembled micelles/LbL particles and provide a basis for further development of boron-containing polymer vehicles for boron neutron capture therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.