Abstract

Both building upon and revising previous literature, this paper formulates the general notion of a Borel subalgebra B of a quasi-hereditary algebra A. We present various general constructions of Borel subalgebras, establish a triangular factorization of A, and relate the concept to graded Kazhdan–Lusztig theories in the sense of Cline et al. (Tohoku Math. J. 45 (1993), 511–534). Various interesting types of Borel subalgebras arise naturally in different contexts. For example, `excellent" Borel subalgebras come about by abstracting the theory of Schubert varieties. Numerous examples from algebraic groups, q-Schur algebras, and quantum groups are considered in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.