Abstract

We derive the expression of an optimum non-Gaussian radar detector from the non-Gaussian spherically invariant random process (SIRP) clutter model and a bayesian estimator of the SIRP characteristic density. SIRP modelizes non-Gaussian process as a complex Gaussian process whose variance, the so-called texture, is itself a positive random variable (r.v.). After performing a bayesian estimation of the texture probability density function (PDF) from reference clutter cells we derive the so-called bayesian optimum radar detector (BORD) without any knowledge about the clutter statistics. We also derive the asymptotic expression of BORD (in law convergence), the so-called asymptotic BORD, as well as its theoretical performance (analytical threshold expression). BORD performance curves are shown for an unknown target signal embedded in correlated K-distributed and are compared with those of the optimum K-distributed detector. These results show that BORD reach optimal detector performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.