Abstract
Polymers of ribonucleotides (RNAs) are considered to store genetic information and promote biocatalytic reactions for the proto life on chemical evolution. Abiotic synthesis of ribonucleotide was successful in past experiments; nucleoside synthesis occurred first, followed by phosphorylation. These abiotic syntheses are far from biotic reactions and have difficulties as a prebiotic reaction in reacting chemicals in a specific order and purifying intermediates from other molecules in multi-steps of reactions. Another reaction, ribose phosphorylation followed by nucleobase synthesis or nucleobase addition, is close to the biotic reactions of nucleotide synthesis. However, the synthesis of ribose 5′-phosphate under prebiotically plausible conditions remains unclear. Here, we report a high-yield regioselective one-pot synthesis of ribose 5′-phosphate from an aqueous solution containing ribose, phosphate, urea, and borate by simple thermal evaporation. Of note, phosphorylation of ribose before the nucleoside formation differs from the traditional prebiotic nucleotide syntheses and is also consistent with biological nucleotide synthesis. Phosphorylation occurred to the greatest extent in ribose compared to other aldopentoses, only in the presence of borate. Borate is known to improve the stability of ribose preferentially. Geological evidence suggests the presence of borate-rich settings on the early Earth. Therefore, borate-rich evaporitic environments could have facilitated preferential synthesis of ribonucleotide coupled with enhanced stability of ribose on the early Earth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.