Abstract

We develop an algebraic multigrid (AMG) setup scheme based on the bootstrap framework for multiscale scientific computation. Our approach uses a weighted least squares definition of interpolation, based on a set of test vectors that are computed by a bootstrap setup cycle and then improved by a multigrid eigensolver and a local residual-based adaptive relaxation process. To emphasize the robustness, efficiency, and flexibility of the individual components of the proposed approach, we include extensive numerical results of the method applied to scalar elliptic partial differential equations discretized on structured meshes. As a first test problem, we consider the Laplace equation discretized on a uniform quadrilateral mesh, a problem for which multigrid is well understood. Then, we consider various more challenging variable coefficient systems coming from covariant finite-difference approximations of the two-dimensional gauge Laplacian system, a commonly used model problem in AMG algorithm development for linear systems arising in lattice field theory computations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.