Abstract
Graphitic carbon nitride (g-C3N4) is a promising visible light responsive photocatalyst for solar hydrogen production. However, pristine g-C3N4 suffers from severe charge recombination, resulting in a poor photocatalytic activity. Herein, a facile KOH-assisted sealed heating process is designed to tailor the electronic structure of g-C3N4, leading to a significantly enhanced and stable photocatalytic hydrogen production rate of 225.1 µmol h−1 using only 50 mg of the photocatalyst. An excellent apparent quantum efficiency of 16.82% is achieved at 420 nm. Systematic studies reveal that KOH-assisted sealed heating can generate more cyano groups onto the framework of g-C3N4, which can increase the charge carrier density and reduce the surface charge transfer resistance, promoting charge separation and transfer. The new findings demonstrated in this work provide a facile strategy for the design of low-cost and efficient photocatalyst for solar fuel production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.