Abstract

Electrochemical water splitting is one of the most reliable approaches for environmental-friendly hydrogen production. Because of their stability and abundance, Mn-based materials have been studied as electrocatalysts for the oxygen evolution reaction (OER), which is a more sluggish reaction in the water splitting system. To increase the OER activity of Mn, it is imperative to facilitate the structural change of Mn oxide to the active phase with Mn3+ species, known as the active site. Here, we present the relationship between the electronic conductivity in the catalyst layer and the formation of the Mn active phase, δ-MnO2, from wrinkled Mn(OH)2. Mn(OH)2 has poor conductivity, and it disrupts the oxidation reaction toward MnOOH or δ-MnO2. Adjacent conductive carbon to Mn(OH)2 enabled Mn(OH)2 to be oxidized to δ-MnO2. Furthermore, after repetitive cyclic voltammetry activation, the more conductive environment resulted in a higher density of δ-MnO2 through the irreversible phase transition, and thus it contributes to the improvement of the OER activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.