Abstract

The greatest challenge that limits the application of piezo-photocatalytic materials is the low separation efficiency of the generated electron-hole pairs, resulting in poor catalytic activity. Here, the semiconductor n-p heterojunctions BiVO4/BiFeO3 (BVO/BFO) were designed to enhance its piezo-photocatalytic processes. Under the excitation of piezo-vibration and the irradiation of visible light, the BVO/BFO heterojunctions exhibited ultra-high and stable piezo-photocatalytic performance with the degradation rate of Rhodamine B (RhB) solution up to 98 %, and its k value was 6.12 times than that of photocatalysis and 4.36 times than that of piezoelectric catalysis. Thanks to the n-type BVO nanoparticles with good crystallinity were uniformly distributed on the surface of the p-type piezoelectric material BFO, the built-in polarization field was formed and be advantageous to improve the carrier transport performances. A large electron diffusion coefficient (27.44 × 103 cm2·s−1), effective diffusion length (14.49 cm), and long electron lifetime (7.66 × 10-3 s) were achieved in the BVO/BFO heterojunctions, which played important roles to boost the piezo-photocatalytic activity. The preparation of BVO/BFO heterojunctions and their remarkable photo-piezoelectric properties provides a theoretical and practical reference for the development of efficient piezo-photocatalysis to apply in environmental remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.