Abstract
Benefiting from the extra contribution of O redox, Co-free Li-rich layered oxides (LRNMO) can satisfy the requirement of high specific capacities. However, during the high-voltage charging process, lattice oxygen being oxidized to O− or O2 leads to a gradual transition of the structure from layered to spinel phase, capacity and voltage decline, hindering the practical application of LRNMO in the lithium-ion battery. Here, a surface modification strategy of Li1.2Ni0.32Mn0.48O2-δ doped with Ta5+ ions is proposed, in which the Ta5+ ions occupy the lithium sites of the lattice structure on the surface layer of LRNMO and form a Ta2O5 coating layer. The modified electrode exhibits excellent rate performance and cycling stability, with 94.9% and 85.5% capacity retention rate and voltage retention rate, respectively, after 200 cycles at 1C. Moreover, the initial coulomb efficiency and ionic conductivity of the modified electrode are also apparently enhanced. Simultaneously, the decreased Li/Ni mixing degree of the modified electrode reflects the improvement of the structural stability. Therefore, the modification strategy through strong metal–oxygen bonding to integrate the surface structure to regulate the oxygen activity provides a new direction for the design of high energy density Co-free Li-rich cathode materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.