Abstract

For electrocatalytic water splitting, the sluggish anodic oxygen evolution reaction (OER) restricts the cathodic hydrogen evolution reaction (HER). Therefore, developing an alternative anodic reaction with accelerating kinetics to produce value-added chemicals, especially coupled with HER, is of great importance. Now, a thermodynamically more favorable primary amine (-CH2 -NH2 ) electrooxidation catalyzed by NiSe nanorod arrays in water is reported to replace OER for enhancing HER. The increased H2 production can be obtained at cathode; meanwhile, a variety of aromatic and aliphatic primary amines are selectively electrooxidized to nitriles with good yields at the anode. Mechanistic investigations suggest that NiII /NiIII may serve as the redox active species for the primary amines transformation. Hydrophobic nitrile products can readily escape from aqueous electrolyte/electrode interface, avoiding the deactivation of the catalyst and thus contributing to continuous gram-scale synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.