Abstract

Artificial neural networks are currently applied in a wide variety of fields, and they are near to achieving performance similar to humans in many tasks. Nevertheless, they are vulnerable to adversarial attacks in the form of a small intentionally designed perturbation, which could lead to misclassifications, making these models unusable, especially in applications where security is critical. The best defense against these attacks, so far, is adversarial training (AT), which improves the model’s robustness by augmenting the training data with adversarial examples. In this work, we show that the performance of AT can be further improved by employing the neighborhood of each adversarial example in the latent space to make additional targeted augmentations to the training data. More specifically, we propose a robust selective data augmentation (RSDA) approach to enhance the performance of AT. RSDA complements AT by inspecting the quality of the data from a robustness perspective and performing data transformation operations on specific neighboring samples of each adversarial sample in the latent space. We evaluate RSDA on MNIST and CIFAR-10 datasets with multiple adversarial attacks. Our experiments show that RSDA gives significantly better results than just AT on both adversarial and clean samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.