Abstract
Bayesian network models provide an attractive framework for multimodal sensor fusion. They combine an intuitive graphical representation with efficient algorithms for inference and learning. However, the unsupervised nature of standard parameter learning algorithms for Bayesian networks can lead to poor performance in classification tasks. We have developed a supervised learning framework for Bayesian networks, which is based on the Adaboost algorithm of Schapire and Freund. Our framework covers static and dynamic Bayesian networks with both discrete and continuous states. We have tested our framework in the context of a novel multimodal HCI application: a speech-based command and control interface for a Smart Kiosk. We provide experimental evidence for the utility of our boosted learning approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.