Abstract

Efficient n = O bond activation is crucial for the catalytic reduction of nitrogen compounds, which is highly affected by the construction of active centers. In this study, n = O bond activation was achieved by a single-atom catalyst (SAC) with phosphorus anchored on a Co active center to form intermediate N-species for further hydrogenation and reduction. Unique phosphorus-doped discontinuous active sites exhibit better n = O activation performance than conventional N-cooperated single-atom sites, with a high Faradic efficiency of 92.0% and a maximum ammonia yield rate of 433.3 μg NH4·h-1·cm-2. This approach of constructing environmental sites through heteroatom modification significantly improves atom efficiency and will guide the design of future functional SACs with wide-ranging applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.