Abstract

Deer are an iconic group of large mammals that originated in the Early Miocene of Eurasia (ca. 19 Ma). While there is some consensus on key relationships among their members, on the basis of molecular- or morphology-based analyses, or combined approaches, many questions remain, and the bony labyrinth has shown considerable potential for the phylogenetics of this and other groups. Here we examine its shape in 29 species of living and fossil deer using 3D geometric morphometrics and cladistics. We clarify several issues of the origin and evolution of cervids. Our results give new age estimates at different nodes of the tree and provide for the first time a clear distinction of stem and crown Cervidae. We unambiguously attribute the fossil Euprox furcatus (13.8 Ma) to crown Cervidae, pushing back the origin of crown deer to (at least) 4 Ma. Furthermore, we show that Capreolinae are more variable in bony labyrinth shape than Cervinae and confirm for the first time the monophyly of the Old World Capreolinae (including the Chinese water deer Hydropotes) based on morphological characters only. Finally, we provide evidence to support the sister group relationship of Megaloceros giganteus with the fallow deer Dama.

Highlights

  • Deer (Cervidae) are a family of antlered ruminants and, with 55 extant species, are one of the most diverse groups of artiodactyls

  • While the distinction between the extant subfamilies Capreolinae and Cervinae is morphologically distinguishable by the condition of the lateral digits, the phylogenetic position and the genus-level relationships of many fossil species are still debated

  • Our analysis i) unquestionably separates stem from crown cervids; ii) sets the origin of crown deer earlier than previously proposed by molecular phylogenetic analyses and, in line with palaeontological data, confirms the position of Megaloceros in the Dama lineage; iii) adds data to the peculiar morphological disparity of New World cervids; iv) recalibrates the phylogenetic tree of cervids; and v) confirms the high potential of the bony labyrinth for resolving conflicting phylogenies in mammals, such as the phylogenetic position of the inermous Hydropotes

Read more

Summary

Introduction

Deer (Cervidae) are a family of antlered ruminants and, with 55 extant species, are one of the most diverse groups of artiodactyls. While the distinction between the extant subfamilies Capreolinae and Cervinae is morphologically distinguishable by the condition of the lateral digits (distal part preserved only or “telemetacarpal” vs proximal part preserved only or “plesiometacarpal”, respectively), the phylogenetic position and the genus-level relationships of many fossil species are still debated (see Grubb[12] and Croitor[13] for Plio-Pleistocene taxa) This has a strong effect on the ages used to calibrate deer phylogeny and, ruminant phylogeny as a whole. Our analysis i) unquestionably separates stem from crown cervids; ii) sets the origin of crown deer earlier than previously proposed by molecular phylogenetic analyses and, in line with palaeontological data, confirms the position of Megaloceros in the Dama lineage; iii) adds data to the peculiar morphological disparity of New World cervids; iv) recalibrates the phylogenetic tree of cervids; and v) confirms the high potential of the bony labyrinth for resolving conflicting phylogenies in mammals, such as the phylogenetic position of the inermous Hydropotes

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.