Abstract

The bonding in lithium high-spin clusters contradicts the usual chemical bonding concept since there are no electron pairs between the atoms, and they are bound with parallel spin electrons. Quantum theory of atoms in molecules and interacting quantum atom analysis (IQA) were used to investigate the nature of bonding in the high-spin clusters. Our findings demonstrate that the non-nuclear attractors (NNAs) are an essential component of the high-spin lithium clusters and play a key role in keeping them stable. Based on IQA energy terms, an electrostatic destabilizing interaction between the lithium atoms works against the cluster formation. On the other hand, the interactions between lithium atoms and NNA basins are stabilizing and outweigh the lithium-lithium destabilizing effects. In fact, NNAs tend to draw lithium atoms together and stabilize the resulting cluster. The high-spin clusters of lithium can be regarded as electrostatically driven compounds since the electrostatic components are primarily responsible for the stabilizing interactions between NNAs and Li atoms. The only exception is 3 Li2 , which lacks NNA and has a non-repellent lithium-lithium interaction. Indeed, in the 3 Li2 , the interatomic electrostatic component is negligibly small, and the exchange-correlation term leads to a weak bonding interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.