Abstract

Many modern technologies require permanent magnets with combinations of properties that cannot be met by conventional metallic or ceramic magnets. Ferrite/polymer composite magnets are a type of rare-earth free magnet with a wide range of magnetic and material property combinations. The uncertainty surrounding the supply and pricing of rare-earth elements, along with environmental issues of using these elements, have motivated many researchers to develop high-performance ferrite-based magnets via an exchange spring method. The present study explores magnetite coated M-type ferrite nanocomposites synthesised via a hydrothermal and coprecipitation method, and investigates the mechanical and magnetic properties of warm compressed high-performance exchange-coupled nanocomposites in an epoxy matrix. We show how the powder-to-resin ratio and preparation conditions lead to optimised mechanical properties, and enhancement in the maximum energy product of the composite magnet by up to 120% compared to a commercial SrM bonded plasto-ferrite magnet. These high performance composite magnets can lower the final cost of ferrite based bonded magnets without reducing the permanent magnetic properties or can be used in applications that a ferrite magnet has inadequate performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.