Abstract

Bond strength evaluation of wire bonding in microchips is the key study in any wire bonding mechanism. The quality of the wire bond interconnection relates very closely to the reliability of the microchip during performance of its function in any application. In many reports, concerns regarding the reliability of the microchip are raised due to formation of void at the wire-bond pad bonding interface, predominantly after high temperature storage (HTS) annealing conditions. In this report, the quality of wire bonds prepared at different conditions, specifically annealed at different HTS durations are determined by measurements of the strength of the interface between the bond wire and the bond pad. The samples are tested in pull test and bond shear test. It was observed that the higher bonding temperature as well as the longer duration of HTS increased the bond strength. This is represented through the analysis of the measurements of ball shear strength. This is due to the fact that higher bonding temperature and longer HTS promoted better growth of the Cu-Al IMC layer. A transmission electron microscopy - energy dispersive X-ray analysis (TEM-EDX) has been carried out to observe the formation of the Cu-Al IMC layer in the sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.