Abstract

Well-defined structure-property relationships offer a conceptual basis to afford a priori design principles to develop novel π-conjugated molecular and polymer materials for nonlinear optical (NLO) applications. Here, we introduce the bond ellipticity alternation (BEA) as a robust parameter to assess the NLO characteristics of organic chromophores and illustrate its effectiveness in the case of streptocyanines. BEA is based on the symmetry of the electron density, a physical observable that can be determined from experimental X-ray electron densities or from quantum-chemical calculations. Through comparisons to the well-established bond-length alternation and π-bond order alternation parameters, we demonstrate the generality of BEA to foreshadow NLO characteristics and underline that, in the case of large electric fields, BEA is a more reliable descriptor. Hence, this study introduces BEA as a prominent descriptor of organic chromophores of interest for NLO applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.