Abstract

The bond characteristics of four different types of carbon fiber reinforced polymer (CFRP) rebars (or tendons) with different surface deformations embedded in lightweight concrete were analyzed experimentally. In a first series of tests, local bond stress-slip data, as well as bond stress-radial deformation data, needed for interface modeling of the bond mechanics, were obtained for varying levels of confining pressure. In addition to bond stress and slip, radial stress and radial deformation were considered fundamental variables needed to provide for configuration-independent relationships. Each test specimen consisted of a CFRP rebar embedded in a 76-mm-(3 in.)-diam, 102-mm-(4 in.)-long, precracked lightweight concrete cylinder subjected to a constant level of pressure on the outer surface. Only 76 mm (3 in.) of contact were allowed between the rebar and the concrete. For each rebar type, bond stress-slip and bond stress-radial deformation relationships were obtained for four levels of confining axisymmetric radial pressure. It was found that small surface indentations were sufficient to yield bond strengths comparable to that of steel bars. It was also shown that radial pressure is an important parameter that can increase the bond strength almost threefold for the range studied. In a second series of tests, the rebars were pulled out from 152-mm-(6 in.)-diam, 610-mm-(24 in.)-long lightweight concrete specimens. These tests were conduced to provide preliminary data for development length assessment and model validation (Part II).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.