Abstract
Embedding the five-dimensional (5D) space of the Bohr Hamiltonian with a deformation-dependent mass (DDM) into a six-dimensional (6D) space shows that the free parameter in the dependence of the mass on the deformation is connected to the curvature of the 5D space, with the special case of constant mass corresponding to a flat 5D space. Comparison of the DDM Bohr Hamiltonian to the 5D classical limit of Hamiltonians of the 6D interacting boson model (IBM), shows that the DDM parameter is proportional to the strength of the pairing interaction in the U(5) (vibrational) symmetry limit, while it is proportional to the quadrupole–quadrupole interaction in the SU(3) (rotational) symmetry limit, and to the difference of the pairing interactions among s, d bosons and d bosons alone in the O(6) (γ-soft) limit. The presence of these interactions leads to a curved 5D space in the classical limit of IBM, in contrast to the flat 5D space of the original Bohr Hamiltonian, which is made curved by the introduction of the DDM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics G: Nuclear and Particle Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.