Abstract

The purpose of this study was to identify rehabilitative effects and changes in white matter microstructure in people with high-level spinal cord injury following bilateral upper-extremity motor skill training. Five subjects with high-level (C5–C6) spinal cord injury (SCI) performed five visuo-spatial motor training tasks over 12 sessions (2–3 sessions per week). Subjects controlled a two-dimensional cursor with bilateral simultaneous movements of the shoulders using a non-invasive inertial measurement unit-based body-machine interface. Subjects’ upper-body ability was evaluated before the start, in the middle and a day after the completion of training. MR imaging data were acquired before the start and within two days of the completion of training. Subjects learned to use upper-body movements that survived the injury to control the body-machine interface and improved their performance with practice. Motor training increased Manual Muscle Test scores and the isometric force of subjects’ shoulders and upper arms. Moreover, motor training increased fractional anisotropy (FA) values in the cingulum of the left hemisphere by 6.02% on average, indicating localized white matter microstructure changes induced by activity-dependent modulation of axon diameter, myelin thickness or axon number. This body-machine interface may serve as a platform to develop a new generation of assistive-rehabilitative devices that promote the use of, and that re-strengthen, the motor and sensory functions that survived the injury.

Highlights

  • Despite progress in the field of assistive technologies for people who suffered an injury to the spinal cord, most of the current devices to control computers and wheelchairs are set in place to require as little physical effort from the user as possible, and little attention has been paid to maintaining and strengthening the neural and muscular resources that survived the injury [1,2,3,4]

  • University JHU white-matter atlas) revealed that the only ROI that showed a significant increase in ROI analysis on the damaged regions of interest

  • ROI that showed a significant increase in fractional anisotropy (FA) following

Read more

Summary

Introduction

Despite progress in the field of assistive technologies for people who suffered an injury to the spinal cord, most of the current devices to control computers and wheelchairs are set in place to require as little physical effort from the user as possible, and little attention has been paid to maintaining and strengthening the neural and muscular resources that survived the injury [1,2,3,4]. Even in individuals with injuries to the cervical spinal cord, some motor and sensory capacities may remain available in the upper. Several studies have shown that using their remaining functions and keeping an active body is critical for people with SCI in order to avoid the collateral effects of paralysis and to potentially recover some of the lost mobility [5,6,7,11]. Recent advances in neural imaging have allowed learning studies on juggling [13], balance [14] and body-machine interfaces (BMIs) by our group [15], to demonstrate motor skill learning-induced structural changes of cortical and subcortical areas in both gray matter and white matter by using diffusion tensor imaging (DTI). White matter integrity is commonly measured by fractional anisotropy (FA), a normalized measure of the variance of the diffusion ellipsoid at each voxel [16]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.