Abstract

A new noninvasive approach has been developed to resolve spatially distributed cardiac electrical activity by measuring the surface Laplacian of the body surface potential. Computer simulations demonstrate the ability of the Laplacian map compared with the potential map to image spatially distributed dipole sources embedded in a semi-infinite volume conductor. Body surface Laplacian mapping has been implemented in human subjects utilizing dry bipolar Laplacian electrodes and compared with potential maps obtained using the central terminal of each bipolar Laplacian electrode. The body surface Laplacian ECG distribution was found to provide better spatial resolution than the body surface potential distribution. The body surface Laplacian map appears to resolve depolarization and repolarization of different regions of the heart. Further improvements of the body surface Laplacian mapping may permit noninvasive mapping of spatially distributed intracardiac events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.