Abstract

The embryonic endocardium is essential for early heart development as it functions to induce trabecular myocardium, the first heart tissue to form, and is the source of the cells that make up the valves and a portion of the coronary vasculature. With this potential, human endocardial cells could provide unique therapeutic opportunities that include engineering biological valves and cell-based therapy strategies to replace coronary vasculature in damaged hearts. To access human endocardial cells, we generated a human pluripotent stem cell (hPSC)-derived endothelial population that displays many characteristics of endocardium, including expression of the cohort of genes that identifies this lineage invivo, the capacity to induce a trabecular fate in immature cardiomyocytes invitro, and the ability to undergo an endothelial-to-mesenchymal transition. Analyses of the signaling pathways required for development of the hPSC-derived endocardial cells identified a novel role for BMP10 in the specification of this lineage from cardiovascular mesoderm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.