Abstract

Atherosclerotic cardiovascular diseases are the leading cause of mortality worldwide. Atherosclerotic cardiovascular diseases are considered as chronic inflammation processes. In addition to risk factors associated with the cardiovascular system itself, pathogenic bacteria such as the periodontitis-associated Porphyromonas gingivalis (P gingivalis) are also closely correlated with the development of atherosclerosis, but the underlying mechanisms are still elusive. To elucidate the mechanisms of P gingivalis-accelerated atherosclerosis and explore novel therapeutic strategies of atherosclerotic cardiovascular diseases. Bmal1-/- (brain and muscle Arnt-like protein 1) mice, ApoE-/- mice, Bmal1-/-ApoE-/- mice, conditional endothelial cell Bmal1 knockout mice (Bmal1fl/fl; Tek-Cre mice), and the corresponding jet-legged mouse model were used. P gingivalis accelerates atherosclerosis progression by triggering arterial oxidative stress and inflammatory responses in ApoE-/- mice, accompanied by the perturbed circadian clock. Circadian clock disruption boosts P gingivalis-induced atherosclerosis progression. The mechanistic dissection shows that P gingivalis infection activates the TLRs-NF-κB signaling axis, which subsequently recruits DNMT-1 to methylate the BMAL1 promoter and thus suppresses BMAL1 transcription. The downregulation of BMAL1 releases CLOCK, which phosphorylates p65 and further enhances NF-κB signaling, elevating oxidative stress and inflammatory response in human aortic endothelial cells. Besides, the mouse model exhibits that joint administration of metronidazole and melatonin serves as an effective strategy for treating atherosclerotic cardiovascular diseases. P gingivalis accelerates atherosclerosis via the NF-κB-BMAL1-NF-κB signaling loop. Melatonin and metronidazole are promising auxiliary medications toward atherosclerotic cardiovascular diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.