Abstract
Hydrogel beads from rice milk and blueberry (BB) skins were fabricated as novel bio-based pH-sensitive devices. The encapsulation of BB into rice milk/alginate beads was achieved through a simple methodology. The colourimetric response of beads in different pH media was evaluated along with the proof of reusability, showing appropriate reversibility. The evaluation of the stability of BB-loaded beads in accelerated ageing conditions (4, 25 and 40 °C and under visible/UV light) showed high stability of beads (up to 28 days) even in the presence of harsh conditions. The half-time of cyanidin-3-glucoside decreases at high temperatures and under UV light exposure. The sensitivity to ammonia (NH3) and trimethylamine (TMA), as main spoilage volatiles of protein food products, was evaluated. The detection limits (LOD) for NH3 and TMA were 22.4 ppm and 72.1 ppm, respectively. Finally, the hydrogel beads were applied to monitor the spoilage of minced chicken breast. The colour of the beads, changing from dark reddish to green/yellowish and indicative of a high level of amine, could be detected by the naked eye after 3–5 days. This research proposes a sustainable, low-cost, and simple method to fabricate BB-loaded hydrogel beads as a promising tool for intelligent packaging applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.