Abstract
Obtaining efficient blue emission from CdSe nanoplatelets (NPLs) remains challenging due to charge trapping and sub-bandgap emission. Thanks to a design-of-experiments (DoE) approach, we significantly improved the NPL synthesis, obtaining precise control over the lateral aspect ratio (length/width). We raised the photoluminescence quantum efficiency up to 66% after growth of a CdS crown, with complete elimination of trap-state emission. Using these 3.5 monolayer, blue-emitting CdSe/CdS core/crown NPLs (λ = 460 nm), we fabricated light-emitting diodes (LEDs) with narrowband (16 nm) blue electroluminescence, an external quantum efficiency of 1.3% and low turn-on voltage of 2.9 V after DoE optimization. Our findings show that NPLs are a promising system to obtain LEDs that emit a saturated blue color.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.