Abstract

In the past decade, hydrophobic fluorescent carbon dots (OCDs) have received little attention, and its potential application and light transition mechanism is seldom explored. Here we report a novel one-step approach for synthesizing blue- and green-emitting hydrophobic fluorescent carbon dots (OCDb and OCDg) by calcinating with the uses of citric acid and hexadecylamine as initial reactants. The optimal conditions for preparing OCDb and OCDg were obtained by using the Taguchi L25 (35) orthogonal array. The highest quantum yield and product yield of OCDs reached 80.2% and 57.1%, respectively, larger than those from most of all the known reports. The fluorescent stability of OCDb and OCDg was excellent under UV irradiation (30 W) for days. The luminescent color of OCDs showed a great dependence on reaction conditions. It is easier to get OCDg via a reaction kept at a high temperature for a long time. The optical transition mechanism was studied for the two kinds of color OCDs, and therefore proposed in combination with their optical properties and surface groups. The reason for light transition is probably related to an appropriate critical ratio and surface density of the C=O and N–H bond in the surface structure of the product. For the OCDg, the concentration matching ratio of N–H and C=O bonds in the surface structure of the green-emitting product is approximately between d/2 and 3d/2, where d is a fixed constant. Lower than or higher than this critical ratio range, the product emits blue light. Based on their high fluorescence quantum efficiency and the advantages mentioned above, these OCDs were then respectively used for preparing hydrophobic fluorescent carbon dot-loading liposomes and acrylate films, both exhibiting a perfect performance with no fluorescence quenching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.