Abstract

AbstractWe consider the blowup of solutions of the initial boundary value problem for a class of non‐linear evolution equations with non‐linear damping and source terms. By using the energy compensation method, we prove that when p>max{m, α}, where m, α and p are non‐negative real numbers and m+1, α+1, p+1 are, respectively, the growth orders of the non‐linear strain terms, damping term and source term, under the appropriate conditions, any weak solution of the above‐mentioned problem blows up in finite time. Comparison of the results with the previous ones shows that there exist some clear condition boundaries similar to thresholds among the growth orders of the non‐linear terms, the states of the initial energy and the existence and non‐existence of global weak solutions. Copyright © 2002 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.