Abstract
We study in this article the blow-up of the solution of the generalized Tricomi equation in the presence of two mixed nonlinearities, namely we consider $$${(Tr) \hspace{1cm} u_{tt}-t^{2m}\Delta u=}$$$|$$${u_t}$$$|$$${^p+}$$$|$$${u}$$$|$$${^q}$$$, $$${\quad \mbox{in} \mathbb{R}^N\times[0,\infty)}$$$, with small initial data, where $$${m ≥ 0}$$$. For the problem $$${(Tr)}$$$ with $$${m = 0}$$$, which corresponds to the uniform wave speed of propagation, it is known that the presence of mixed nonlinearities generates a new blow-up region in comparison with the case of a one nonlinearity (|$$${u_t}$$$|$$${^p}$$$ or |$$${u}$$$|$$${^q}$$$). We show in the present work that the competition between the two nonlinearities still yields a new blow region for the Tricomi equation $$${(Tr)}$$$ with $$${m ≥ 0}$$$, and we derive an estimate of the lifespan in terms of the Tricomi parameter $$${m}$$$. As an application of the method developed for the study of the equation $$${(Tr)}$$$ we obtain with a different approach the same blow-up result as in [18] when we consider only one time-derivative nonlinearity, namely we keep only |$$${u_t}$$$|$$${^p}$$$ in the right-hand side of $$${(Tr)}$$$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.