Abstract

Blow spinning is continuing to gain attention in tissue engineering, as the resultant nanofibrous structures can be used to create a biomimetic environment. In this study, blow spinning was used to construct nanofiber scaffolds with up to 10 % chitosan and poly(DL-lactide-co-glycolide) in the absence or presence of poly(ethylene glycol). Scanning electron microscopy demonstrated that nanofibers were distributed randomly to form three-dimensional mats. With respect to chitosan concentration, the average fiber diameter did not differ statistically in either the absence or presence of poly(ethylene glycol). In poly(ethylene glycol)-formulations, the average fiber diameter ranged from (981.9 ± 611.3) nm to (1139.2 ± 814.2) nm. In vitro cellular metabolic activity and proliferation studies using keratinized rat squamous epithelial cells (RL-65) showed that cytocompatibility was not compromised with the addition of poly(ethylene glycol). The cell responses at lower (1 and 2.5 %) chitosan concentrations were not significantly different from the groups without chitosan or no scaffold when cultivated for 3, 6, or 9 days. However, >15 % reduction in cellular responses were observed at 10 % chitosan. In presence of poly(ethylene glycol), nearly a 1-log incremental reduction in the number of colony forming units of Streptococcus mutans occurred as the chitosan concentration increased from 0-1 to 2.5 %. Bacterial preparations tested with poly(ethylene glycol) and 5 or 10 % chitosan were not significantly different than the positive kill control. Taken together, the most favorable conditions for attaining cytocompatibility and maintaining antibacterial functionality existed in poly(ethylene glycol)/poly(DL-lactide-co-glycolide) blow-spun scaffolds with integrated 1 or 2.5 % chitosan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.