Abstract

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with a complicated and poorly understood pathogenesis. Recently, alterations in the blood–Central Nervous System barrier (B-CNS-B) have been recognized as a key factor possibly aggravating motor neuron damage. The majority of findings on ALS microvascular pathology have been determined in mutant superoxide dismutase (SOD1) rodent models, identifying barrier damage during disease development which might similarly occur in familial ALS patients carrying the SOD1 mutation. However, our knowledge of B-CNS-B competence in sporadic ALS (SALS) has been limited. We recently showed structural and functional impairment in postmortem gray and white matter microvessels of medulla and spinal cord tissue from SALS patients, suggesting pervasive barrier damage. Although numerous signs of barrier impairment (endothelial cell degeneration, capillary leakage, perivascular edema, downregulation of tight junction proteins, and microhemorrhages) are indicated in both mutant SOD1 animal models of ALS and SALS patients, other pathogenic barrier alterations have as yet only been identified in SALS patients. Pericyte degeneration, perivascular collagen IV expansion, and white matter capillary abnormalities in SALS patients are significant barrier related pathologies yet to be noted in ALS SOD1 animal models. In the current review, these important differences in blood–CNS barrier damage between ALS patients and animal models, which may signify altered barrier transport mechanisms, are discussed. Understanding discrepancies in barrier condition between ALS patients and animal models may be crucial for developing effective therapies.

Highlights

  • Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motor neurons in the brain and spinal cord, damage which leads to progressive muscle atrophy, paralysis and death typically within three to five years from diagnosis (Rowland and Shneider, 2001)

  • Perivascular collagen IV expansion, and white matter capillary abnormalities in sporadic ALS (SALS) patients are significant barrier related pathologies yet to be noted in ALS SOD1 animal models

  • Exchange by free diffusion is limited to molecules massing less than 450 Da; more massive substances require specific transport mechanisms. These mechanisms allow influx of required substances and efflux of cell waste (Begley and Brightman, 2003; Begley, 2004; Pardridge, 2005). Endothelial cells and their tight/adherens junctions are the primary components of the blood–brain barrier (BBB) and blood–spinal cord barrier (BSCB) systems, while other barrier elements have essential roles in the tightly integrated unit maintaining the CNS environment for proper function of neuronal cells

Read more

Summary

Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motor neurons in the brain and spinal cord, damage which leads to progressive muscle atrophy, paralysis and death typically within three to five years from diagnosis (Rowland and Shneider, 2001). We recently showed structural and functional impairment in postmortem gray and white matter microvessels of medulla and spinal cord tissue from SALS patients, suggesting pervasive barrier damage.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.