Abstract
Brain capillary endothelial cells, which constitute the blood-brain barrier (BBB), are enveloped by the extracellular matrix (ECM) produced by endothelial cells, pericytes and astrocytes. The contribution of matrix components secreted by the various cell types at the neurovascular unit, however, remains unclear with respect to their effect on endothelial barrier function. In this study, a new in vitro model was established by growing endothelial cells on an ECM produced by pericytes, astrocytes or a serial combination of both. The last-mentioned was found to be more in vivo-like. We investigated the role of the composition and morphology of ECM supra-structures in maintaining BBB function. The composition was analysed by protein analysis (enzyme-linked immunosorbent assay) and the ultrastructure of generated matrices was analysed by transmission electron microscopy including immunogold labelling. We could show by electric cell-substrate impedance sensing measurements that pericytes and combined matrices significantly improved the barrier tightness of porcine brain capillary endothelial cells (PBCEC). The increase of the resistance was verified by enhanced expression of tight junction proteins. Thus, for the first time, we have shown that barrier integrity is strictly controlled by the ECM, which is a product of all cells involved in the secretion of ECM components and their modification by corresponding cells. Moreover, we have demonstrated that complex matrices by the various cells of the BBB induce barrier marker enzymes in PBCEC, such as alkaline phosphatase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.