Abstract

A promising class of methods for large-scale population genomic inference use the conditional sampling distribution (CSD), which approximates the probability of sampling an individual with a particular DNA sequence, given that a collection of sequences from the population has already been observed. The CSD has a wide range of applications, including imputing missing sequence data, estimating recombination rates, inferring human colonization history and identifying tracts of distinct ancestry in admixed populations. Most well-used CSDs are based on hidden Markov models (HMMs). Although computationally efficient in principle, methods resulting from the common implementation of the relevant HMM techniques remain intractable for large genomic datasets. To address this issue, a set of algorithmic improvements for performing the exact HMM computation is introduced here, by exploiting the particular structure of the CSD and typical characteristics of genomic data. It is empirically demonstrated that these improvements result in a speedup of several orders of magnitude for large datasets and that the speedup continues to increase with the number of sequences. The optimized algorithms can be adopted in methods for various applications, including the ones mentioned above and make previously impracticable analyses possible. Software available upon request. Supplementary data are available at Bioinformatics online. yss@eecs.berkeley.edu.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.