Abstract

HIV-1 integrase (IN) executes the insertion of proviral DNA into the host cell genome, an essential step in the retroviral life cycle. This is a multi-step process that starts in the cytosol and culminates in the nucleus of the infected cell. It is becoming increasingly clear that IN interacts with a wide range of different host-cell proteins throughout the viral life cycle. These cellular cofactors are exploited for various functions, including nuclear import, DNA target-site selection and virion assembly. The disruption of key interactions between IN and direct cellular cofactors affords a novel therapeutic approach for the design and development of new classes of anti-retroviral agents. Here, we will discuss the rationale behind this emerging and promising therapeutic strategy for HIV drug discovery. Our discussion includes the identified IN cellular cofactors, key research developments in the field and the implications this approach will have on the current HIV treatment regimen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.