Abstract

Although the Internet of Things (IoT) brings efficiency and convenience to various aspects of people’s lives, security and privacy concerns persist as significant challenges. Certificateless Signatures eliminate digital certificate management and key escrow issues and can be well embedded in resource-constrained IoT devices for secure access control. Recently, Ma et al. designed an efficient and pair-free certificateless signature (CLS) scheme for IoT deployment. Unfortunately, We demonstrate that the scheme proposed by Ma et al. is susceptible to signature forgery attacks by Type-II adversaries. That is, a malicious-and-passive key generation center (KGC) can forge a legitimate signature for any message by modifying the system parameters without the user’s secret value. Therefore, their identity authentication scheme designed based on vehicular ad-hoc networks also cannot guarantee the claimed security. To address the security vulnerabilities, we designed a blockchain-enhanced and anonymous CLS scheme and proved its security under the Elliptic curve discrete logarithm (ECDL) hardness assumption. Compared to similar schemes, our enhanced scheme offers notable advantages in computational efficiency and communication overhead, as well as stronger security. In addition, a mutual authentication scheme that satisfies the cross-domain scenario is proposed to facilitate efficient mutual authentication and negotiated session key generation between smart devices and edge servers in different edge networks. Performance evaluation shows that our protocol achieves an effective trade-off between security and compute performance, with better applicability in IoT scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.