Abstract

Tuberculosis is the oldest known infectious disease, yet there is no effective vaccine against adult pulmonary tuberculosis. Emerging evidence indicates that T-helper 1 and T-helper 17 cells play important roles in host protection against tuberculosis. However, tuberculosis vaccine efficacy in mice is critically dependent on the balance between antigen-specific central memory T (Tcm) and effector memory T (Tem) cells. Specifically, a high Tcm/Tem cell ratio is essential for optimal vaccine efficacy. Here, we show that inhibition of Kv1.3, a potassium channel preferentially expressed by Tem cells, by Clofazimine selectively expands Tcm cells during BCG vaccination. Furthermore, mice that received clofazimine after BCG vaccination exhibited significantly enhanced resistance against tuberculosis. This superior activity against tuberculosis could be adoptively transferred to naive, syngeneic mice by CD4+ T cells. Therefore, clofazimine enhances Tcm cell expansion, which in turn provides improved vaccine efficacy. Thus, Kv1.3 blockade is a promising approach for enhancing the efficacy of the BCG vaccine in humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.