Abstract

Abstract Metastatic melanoma is a very deadly type of skin cancer with poor prognosis and low 5-year survival rates. Until recently, patients with metastatic melanoma had very few treatment options, which only included dacarbazine and aldesleukin. In 2011, the first checkpoint blocker, ipilimumab was approved for the treatment of unresectable metastatic melanoma but its success was eclipsed by low response rates and high incidence of adverse events. Later in 2014, anti-PD-1 antibodies, nivolumab and pembrolizumab were approved for the treatment of metastatic melanoma. With comparatively high response rates and manageable safety profile, PD-1 blockers were remarkably successful in the treatment of melanoma and also other cancer subtypes such as non-small cell lung cancer and metastatic urothelial carcinoma. This article highlights the success of anti-PD-1 antibodies, discusses the mechanism of PD-1:PD-L1/2 pathway, responses of melanoma patients to PD-1 blockers and the research on improving response rates to PD-1 blockers.

Highlights

  • Melanoma is a type of skin cancer caused due to uncontrolled proliferation of melanocytes, the melanin producing cells located at the basal layer (Stratum basale) of skin epidermis

  • In 2014, 3 years after approval of ipilimumab, 2 anti-PD-1 antibodies, pembrolizumab and nivolumab were approved for the treatment of unresectable metastatic melanoma

  • Combination of anti-CTLA-4 and anti-PD-1 antibodies, approved in 2015 was found to increase the response rates even further and nearly 50% of patients reportedly showed objective responses to therapy [4-6]. This present article discusses the significance of PD-1 blockade in melanoma treatment with details on checkpoint mediated regulation of T-cell activity, functions of PD-1:PD-L pathway, response rates of approved PD-1 blockers including nivolumab and pembrolizumab and details of PD-1:PD-L pathway targeting antibodies in clinical development

Read more

Summary

Immune Checkpoints

Melanoma is a type of skin cancer caused due to uncontrolled proliferation of melanocytes, the melanin producing cells located at the basal layer (Stratum basale) of skin epidermis. The approval of vemurafenib (BRAFV600E inhibitor) and ipilimumab (anti-CTLA-4 monoclonal antibody) in 2011 was a major milestone in treatment of melanoma as the drugs increased the survival rates of patients and laid foundation for further research in immunotherapy and targeted therapy of melanoma (Figure 1). Combination of anti-CTLA-4 and anti-PD-1 antibodies, approved in 2015 was found to increase the response rates even further and nearly 50% of patients reportedly showed objective responses to therapy [4-6] This present article discusses the significance of PD-1 blockade in melanoma treatment with details on checkpoint mediated regulation of T-cell activity, functions of PD-1:PD-L pathway, response rates of approved PD-1 blockers including nivolumab and pembrolizumab and details of PD-1:PD-L pathway targeting antibodies in clinical development. The cell types expressing PD-1 receptors include activated monocytes, macrophages, myeloid L1

Microsoft Himalaya
Metastatic urothelial carcinoma
Nivolumab and Ipilimumab combination
Pembrolizumab and Ipilimumab combination
Findings
Combination Therapy and Ongoing Research
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.