Abstract

We examined the role of class IA phosphoinositide 3-kinase (PI3K) in the regulation of activation of NADPH oxidase in PMNs and the mechanism of PMN-dependent lung inflammation and microvessel injury induced by the pro-inflammatory cytokine TNF-alpha. TNF-alpha stimulation of PMNs resulted in superoxide production that was dependent on CD11b/CD18-mediated PMN adhesion. Additionally, TNF-alpha induced the association of CD11b/CD18 with the NADPH oxidase subunit Nox2 (gp91(phox)) and phosphorylation of p47(phox), indicating the CD11b/CD18 dependence of NADPH oxidase activation. Transduction of wild-type PMNs with Deltap85 protein, a dominant-negative form of the class IA PI3K regulatory subunit, p85alpha, fused to HIV-TAT (TAT-Deltap85) prevented (i) CD11b/CD18-dependent PMN adhesion, (ii) interaction of CD11b/CD18 with Nox2 and phosphorylation of p47(phox), and (iii) PMN oxidant production. Furthermore, studies in mice showed that i.v. infusion of TAT-Deltap85 significantly reduced the recruitment of PMNs in lungs and increase in lung microvascular permeability induced by TNF-alpha. We conclude that class IA PI3K serves as a nodal point regulating CD11b/CD18-integrin-dependent PMN adhesion and activation of NADPH oxidase, and leads to oxidant production at sites of PMN adhesion, and the resultant lung microvascular injury in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.