Abstract

IntroductionBone morphogenetic proteins (BMPs) are multifunctional secreted growth factors regulating a broad spectrum of functions in numerous systems. An increased expression and production of specific BMPs have been described in the rheumatoid arthritis (RA) synovium. The aim of this study was to analyze the involvement of the BMP signaling pathway in RA synoviocytes in response to interleukin-17 (IL-17) and tumor necrosis factor-alpha (TNF-α).MethodsThe expression of components of the BMP signaling pathway (BMP receptors, BMP ligands, BMP signal transducers, and BMP antagonists) was analyzed by quantitative polymerase chain reaction before and after treatment of RA synoviocytes with TNF-α or IL-17 or both. Regulation was studied in the presence of the specific BMP inhibitor DMH1 (dorsomorphin homologue 1) or an exogenous BMP ligand, BMP6. Expression and production of pro-inflammatory cytokines (IL-6 and granulocyte-macrophage colony-stimulating factor), chemokines (IL-8, CCL2, CCL5, and CXCL10), and matrix metalloproteinases (MMP-1, −2, −3, −9, and −13) were analyzed.ResultsRA synoviocytes express BMP receptors (mainly BMPRIA, ACTRIA, and BMPRII), signal transducers of the Smad family (Smad1 and 5 and co-Smad4), and different BMP antagonists. The modulation of the expression of the BMP target genes—Id (inhibitor of DNA-binding/differentiation) proteins and Runx (Runt-related transcription factor) transcription factors—after the addition of exogenous BMP shows that the BMP signaling pathway is active. RA synoviocytes also express BMP ligands (BMP2, BMP6, and BMP7) which are highly upregulated after activation with TNF-α and IL-17. Autocrine BMP signaling pathway can be blocked by treatment with the inhibitor DMH1, leading to an increase in the upregulated expression of pro-inflammatory cytokines, chemokines, and MMPs induced by the activation of RA synoviocytes with TNF-α and IL-17. Conversely, the additional stimulation of the BMP pathway with the exogenous addition of the BMP6 ligand decreases the expression of those pro-inflammatory and pro-destructive factors.ConclusionThe results indicate that the canonical BMP pathway is functionally active in human RA synoviocytes and that the inhibition of autocrine BMP signaling exacerbates the pro-inflammatory phenotype induced in RA synoviocytes by the stimulation with IL-17 and TNF-α.

Highlights

  • Bone morphogenetic proteins (BMPs) are multifunctional secreted growth factors regulating a broad spectrum of functions in numerous systems

  • Bone morphogenetic protein signaling pathway is functionally active in human rheumatoid arthritis synoviocytes The expression of different components of the BMP signaling pathway was analyzed in RA synoviocytes

  • BMP receptor complexes are constituted by one of the following type I receptors, type IA BMP receptor (BMPRIA)/ ALK-3, type IB BMP receptor (BMPRIB)/ALK-6, and type IA activin receptor (ACTRIA)/ALK-2, which commonly combine with type II BMP receptor (BMPRII) and the type IIA and IIB activin receptors (ACTRIIA and Type IIB activin receptor (ACTRIIB))

Read more

Summary

Introduction

Bone morphogenetic proteins (BMPs) are multifunctional secreted growth factors regulating a broad spectrum of functions in numerous systems. BMPs were originally identified as growth and differentiation factors for osteogenic cells but are considered multifunctional proteins implicated in the development of virtually all organs and the renewal and maintenance of different adult tissues [1, 4,5,6] The relevance of this pathway is further emphasized by the fact that an aberrant BMP signaling can result in several developmental defects and distinct human disorders, including cancer, chronic kidney diseases, endocrine alterations, vascular diseases, and joint and musculoskeletal disorders [7,8,9,10]. Fibroblast-like synoviocytes from patients with RA have been demonstrated to express BMP receptors [17] and to upregulate the expression of BMP2 and mainly BMP6 after stimulation with pro-inflammatory cytokines such as TNF-α, interleukin-1beta (IL-1β), and IL-17 [14, 18, 19]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.