Abstract

In this paper, block circulant matrices and their properties are investigated. Basic concepts and the necessary theorems are presented and then their applications are discussed. It is shown that a circulant matrix can be considered as the sum of Kronecker products in which the first components have the commutativity property with respect to multiplication. The important fact is that the method for block diagonalization of these matrices is much simpler than the previously developed methods, and one does not need to find an additional matrix for orthogonalization. As it will be shown not only the matrices corresponding to domes in the form of Cartesian product, strong Cartesian product and direct product are circulant, but for other structures such as diamatic domes, pyramid domes, flat double layer grids, and some family of transmission towers these matrices are also block circulant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.